LESSON PLAN: TE-1 WINTER SEMESTER 2022 | Discipline:
Mechanical
Engineering | Semester: 35cl
Winter 2022 | Name of the teaching faculty: Aurobinda Biswas | |--|--|--| | Subject:
Thermal
Engineering-1 | No of days/per
week class
allotted: 04 | Semester From Date: 15/09/2022 To Date: 22/12/2022
No of weeks:14 | | Week: | Class day: | Theory/practical topics: | | 1 st | 1 st | Thermodynamic Systems (closed, open, isolated). | | AD THE | 2 nd | Thermodynamic properties of a system(pressure, volume, temperature. | | | 3 rd | Entropy, enthalpy, Internal energy and units of measurement). | | A SPECIA | 4 th | Intensive and extensive properties Define thermodynamic processes, path, cycle, state, path function, point function. | | 2 nd | 1 st | Thermodynamic Equilibrium. Quasi-static Process. | | | 2 nd | Conceptual explanation of energy and its sources. | | | 3 rd | Work, heat and comparison between the two. Mechanical Equivalent of Heat. | | | 4 th | Work transfer, Displacement work. | | 3rd | 1 st | State & explain Zeroth law of thermodynamics. | | | 2 nd | State & explain First law of thermodynamics. Limitations of First law of thermodynamics. | | | 3 rd | Application of First law of Thermodynamics (steadyflow energy equation and its application to turbine and compressor). | | | 4 th | Second law of thermodynamics (Clausius & Kelvin Planck statements). | | 4 th | 1 st | Application of second law in heat engine, heat pump, refrigerator & determination of efficiencies & COP. | | | 2 nd | Solve simple numerical. | | | 3 rd | Laws of perfect gas, Boyle's law, Charle's law, Avogadro's law. | | | 4 th | Dalton's law of partial pressure, Guy-Lussac's Law. | | 5 th | 1st | General gas equation, characteristic gasconstant, Universal gas constant. | | LO | 2 nd | Explain specific heat of gas (C _p and C _v) Relation between C _p & C _v . | | | 3 rd | Enthalpy of a gas, Work done during a non- flow process. | | | 4 th | Application of first law of thermodynamics to various non flow process (Isothermal, Isobaric, Isentropic and polytrophic process). | Govt. Polytechnic Kalahandi | 5 th | 1 st | Solve simple problems on above. | |--|-----------------|---| | | 2 nd | Free expansion & throttling process. | | | 3rd | Explain & classify I.C engine. | | | 4 th | Terminology of I.C Engine such as bore, dead centers, stroke volume, piston speed &RPM. | | 7 th | 1 st | Explain the working principle of 2-stroke engines. | | | 2 nd | Explain the working principle of 4- stroke engine S.I engine. | | 4830 | 3 rd | Explain the working principle of 2-stroke & 4- stroke engine C.I engine. | | | 4 th | Differentiate between 2-stroke & 4-stroke engine C.I engine. | | 8 th | 1 st | Differentiate between 2-stroke & 4-stroke engine S.I engine. | | | 2 nd | Study of valve timing diagram. | | | 3 rd | What is thermodynamic cycle. | | | 4 th | Carnot cycle. | | 9 th | 1 st | P-V diagram with process. | | | 2 nd | Solve simple numerical, | | E-PELME | 3 rd | Otto cycle. | | | 4 th | p-v diagram with process. | | 10 th | 1 st | Solve simple numerical. | | A STATE OF THE STA | 2 nd | Diesel cycle. | | | 3 rd | P-V diagram with process. | | | 4 th | Solve simple numerical. | | 11 th | 1 st | Dual cycle. | | | 2 nd | P-V diagram with process. | | | 3 rd | Solve simple numerical. | | | 4 th | Efficiency comparisons between all. | | 12 th | 1 st | Comparisons between all cycles. | | 200 | 2 nd | Define Fuel. Types of fuel. | | | 3 rd | Application of different types of fuel. | | | 4 th | Solve simple numerical. | | 13 th | 1 st | Solve simple numerical. | | | 2 nd | Heating values of fuel. | | | 3rd | Quality of I.C engine fuels. | | | 4 th | Octane number, Cetane number. | | |------------------|-----------------|---|--| | 14 th | 1 st | Revision & solve simple numerical. | | | Separate a | 2 nd | Revision & solve simple numerical. | | | | 3 rd | Previous years question paper discussion. | | | | 4 th | Previous years question paper discussion. | | Sign. of Faculty Concerned Principal Govt, Polytechnic Kalahandi ## LESSON PLAN: EM WINTER SEMESTER 2022 | Discipline: Mechanical Engineering | Winter 2022 | Name of the teaching faculty: Aurobinda Biswas | |--------------------------------------|--|--| | Subject:
Engineering
Materials | No of days/per
week class
allotted: 04 | Semester From Date: 15/09/2022 To Date: 22/12/2022
No of weeks:14 | | Week: | Class day: | Theory/practical topics: | | 1st | 1st | Material classification into ferrous and nonferrous category. | | | 2 nd | Alloys and Types of alloys. | | | 3rd | Properties of materials: Physical, Chemical and Mechanical. | | | 4 th | Performance requirements. | | 2 nd | 1st | Material reliability and safety. | | | 2nd | Characteristics of ferrous materials. | | | 3rd | | | | 4th | Application of ferrous materials. Classification of low carbon steel. | | 3rd | | The state of s | | 3 | 1st | Composition of low carbon steel. | | | 2 nd | Application of low carbon steel. | | | 3rd | Classification of Medium carbon steel. | | | 4 th | Composition of Medium carbon steel. | | 4th | 1st | Application of Medium carbon steel. | | | 2 nd | Classification of High carbon. | | | 3rd | Composition of High carbon steel. | | | 4th | Application of High carbon steel. | | 5th | 1st | Alloy steel. | | | 2 nd | Low alloy steel. | | | 3rd | High alloy steel. | | | 4th | Tool steel. | | 5th | 1st | Stainless steel. | | | 2nd | Effect of various alloying elements such as Cr, Mn, Ni, V, Mo. | | | | Cooling curves. | | | | Concept of phase diagram. | | th • | | | | | • | Features of Iron-Carbon diagram with salient micro-constituents of Iron and Steel. | Principal Govt. Polytechnic Kalahandi | | 2 nd | Crystal defines, Classification of crystals, ideal crystal and crystal Imperfections. | |------------------|-----------------|--| | | 3rd | Classification of imperfection: Point defects, line defects, surface defects and volume defects. | | | 4 th | Types and causes of point defects: Vacancies, Interstitials and impurities. | | 3th | 1 st | Types and causes of line defects: Edge dislocation and screw dislocation. | | | 2 nd | Effect of deformation on material properties. | | | 3rd | Purpose of Heat treatment. | | | 4 th | Process of heat treatment: Annealing, normalizing. | | 9th | 1st | Hardening, tampering, stress relieving measures. | | | 2 nd | Surface hardening: Carburizing and Nitriding. | | | 3rd | Effect of heat treatment on properties of steel. | | | 4th | Hardenability of steel. | | 10 th | 1st | Aluminum alloys: Composition, Property. | | | 2nd | Usage of Duralmin, y- alloy. | | | 3rd | Copper alloys: Composition, Property. | | | 4 th | Usage of Copper- Aluminum, Copper-Tin, Babbit, Phosperous bronze, brass, Copper- Nickel. | | 11 th | 1 st | Predominating elements of lead alloys, Zinc alloys and Nickel alloys. | | | 2 nd | Low alloy materials like P-91, P-22 for power plants and other high temperature services. | | | 3rd | High alloy materials like stainless steel grades of duplex, super duplex materials etc. | | | 4th | Bearing Material: Classification, composition. | | 12 th | 1st | Properties of Bearing materials. | | | 2 nd | Uses of Copper base, Tin Base, Lead base, Cadmium base bearing materials. | | | 3rd | Spring Materials: Classification, composition | | | 4 th | Properties of Spring materials. | | 13 th | 1st | Uses of Iron-base and Copper base spring material. | | | 2 nd | Properties of Polymers. | | | 3rd | Application of thermosetting and thermoplastic polymers. | | | 4 th | Properties of elastomers. | | 14 th | 1st | Composites and Ceramics: Classification, composition. | | 2 nd | Properties of Composites and Ceramics. | |-----------------|--| | 3rd | Uses of particulate based and fiber reinforced composites. | | 4th | Classification and uses of Ceramics. | Sign. of Faculty Concerned Sign. of HOD Sign. of Principal Principal Govt, Polytechnie Kalahandi ### LESSON PLAN: ME-1 WINTER SEMESTER 2022 | Discipline:
Mechanical
Engineering | Semester: 3 ⁶⁰
Winter 2022 | Name of the teaching faculty: Aurobinda Biswas | |---|--|---| | Subject:
Mechanical
Engineering
Lab- 1 | No of days/per
week class
allotted: 04 | Semester From Date: 15/09/2022 To Date: 22/12/2022
No of weeks:14 | | Week: | Class day: | Theory/practical topics: | | 1 ST | 1 ST | Determine end reactions in a simply supported beam using parallel forceapparatus. | | | 2 ND | Doubt clear lab class. | | | 3 RD | Doubt clear lab class. | | | 4 TH | Viva voce test-1 (experiment-1). | | 2 ND | 1 ST | Determination of Young's modulus using Searle's apparatus. | | | 2 ND | Doubt clear lab class. | | | 3 RD | Doubt clear lab class. | | | 4 TH | Viva voce test-2 (experiment-2). | | 3 RD | 1 ST | Determination of torsional rigidity of the shaft using torsion testing machine. | | | 2 ND | Doubt clear lab class. | | | 3 RD | Doubt clear lab class. | | | 4 TH | Viva voce test-3 (experiment-3). | | 4 TH | 1 ST | Determination of salient points (Young's modulus, yield point, fracture point) from stress- strain curve using Universal Testing Machine. | | | 2 ND | Doubt clear lab class. | | | 3 RD | Doubt clear lab class. | | | 4 TH | Viva voce test-4 (experiment-4). | | 5 TH | 1 ST | Determination of hardness number by Rockwell/Vickers hardness testing machine. | | | 2 ND | Doubt clear lab class. | | 96.740.48 | 3 RD | Doubt clear lab class. | | | 4 TH | Viva voce test-5 (experiment-5). | | Э ТН | 1 ST | Determination of toughness using Impact testing machine (Charpy/Izod). | | | 2 ND | Doubt clear lab class. | | . 1 | 3 RD | Doubt clear lab class. | | | 4 TH | Viva voce test-6 (experiment-6). | | 7 TH | 1 ST | Determination of Flash point and fire point. | |------------------|-----------------|--| | | 2 ND | Doubt clear lab class. | | | 3 RD | Doubt clear lab class | | | 4 TH | Viva voce test-7 (experiment-7). | | 8 TH | 1 ST | Joule's experiment. | | | 2 ND | Doubt clear lab class. | | | 3 RD | Doubt clear lab class. | | | 4 TH | Vivo and that 9 (americant 9) | | 9 TH | 1 ST | Viva voce test-8 (experiment-8). | | | 2 ND | Revision 1 | | | 3 RD | Revision 2 | | in Lines | | Revision 3 | | | 4 TH | Revision 4 | | 10 TH | 1 ST | Revision 5 | | | 2 ND | Revision 6 | | | 3 RD | Revision 7 | | | 4 TH | Revision 8 | | 11 TH | 1 ST | Revision 9 | | | 2 ND | Revision 10 | | | 3 RD | Study of simply supported beam using parallel force apparatus by using smart class room. | | | 4 TH | Study of Young's modulus using Searle's apparatus by using smart class room. | | 12 TH | 1 ST | Study of torsional rigidity of the shaft using torsion testing machine by using smart class room. | | | 2 ND | Study of salient points of Young's modulus, yield point, fracture point from stress- strain curve by using smart class room. | | | 3 RD | Study of hardness number by Rockwell/Vickers hardness testing machine by using smart class room. | | | 4 TH | Study of toughness using Impact testing machine (Charpy/Izod) by using smart class room. | | 13 TH | 1 ST | Study of Flash point and fire point by using smart class room. | | | 2 ND | Study of Joule's experiment by using smart class room. | | | 3 RD | Record checking of the students 1 | | | 4 TH | Record checking of the students 2 | | 14 TH | 1 ST | Grand viva voce test- 1 | | 2 ND | Grand viva voce test- 2 | | |-----------------|------------------------------------|--| | 3 RD | Record submission by student. | | | 4 TH | Record checking and final Marking. | | Sign of Faculty Concerned Principal Govt. Polytechnie Kalahandi ### **LESSON PLAN: WINTER 2022** | -tuttae: | Semester: WINTER | Name of the teaching faculty: Dambarudhar Patel | |----------------------|---------------------------|--| | cipline:
chanical | 2022 | | | bject: Strength | No of days/per week class | Semester From Date: 15/09/2022 To Date: 22/12/2022 | | Materials | allotted: 04 | No of weeks:14 | | eek: | Class day: | Theory/practical topics: | | endone | 151 | Types of load, stresses & strains,(Axial and tangential) Hooke's law, Young's modulus, bulk modulus, modulus of rigidity, Poisson's ratio, derive the relation between three elastic constants, | | desi. | 2 ND | Do | | | 3 RD | Do | | | 4 TH | Principle of super position, stresses in composite section | | ND | 1 ^{5†} | Temperature stress, determine the temperature stress in composite bar (single core) | | | 2 ^{NO} | Strain energy and resilience, Stress due to gradually applied, suddenly applied and impact load | | | 3 RD | Do | | | 4 TH | Simple problems on above. | | 3 RD | 1 st | Do | | | 2 ^{NO} | Do | | | 3 RD | Definition of hoop and longitudinal stress, strain | | | 4 TH | Do | | 4 TH | 1 ST | Derivation of hoop stress, longitudinal stress, hoop strain, longitudinal strain and volumetric strain | | | 2 ND | Do | | | 3 RD | Computation of the change in length, diameter and volume | | | 4 TH | Simple problems on above | | 5 th | 1 ST | Do to the foreign and the second | | | 2 ND | Do | | | 3 RD | Determination of normal stress, shear stress and resultant stress on oblique plane | | | 4 TH | Do man to be contained as a containe | | 6 th | 1 ST | Do | | | 2 ND | Location of principal plane and computation of principal stress | | | 3 RD | Do | | | 4 TH | Do da Alexandra de Caracteria | | 7 th | 1 st | Location of principal plane and computation of principal stress and Maximum she stress using Mohr's circle | | | 2 ND | Do | | | 3 RD | Do 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | |------------------|-----------------|--| | | 4 TH | Do Do | | | 1 ST | Types of beam and load | | | 2 ND | Do | | | 3 RD | Concepts of Shear force and bending moment | | | 4 TH | Do | | | | Shear Force and Bending moment diagram and its salient features illustration in | | th | 151 | cantilever beam, simply supported beam and over hanging beam under point load and uniformly distributed load | | | 2 ND | Do | | | 3 RD | Do | | | 4 TH | Do | | LO th | 1 ST | Do | | | 2 ND | Do Do | | | 3 RD | Assumptions in the theory of bending, | | | 4 TH | Do . | | 11 th | 151 | Bending equation, Moment of resistance, Section modulus& neutral axis. | | | 2 ND | Do | | | 3 RD | Do | | | 4 TH | Solve simple problems. | | 12 th | 1 ST | Define column, Axial load, Eccentric load on column, | | | 2 ND | Do | | | 3 RD | Direct stresses, Bending stresses, Maximum& Minimum stresses. Numerical problems on above. | | | 4 TH | Do | | 13 th | 1 ^{S1} | Buckling load computation using Euler's formula (no derivation) in Columns with various end conditions | | | 2 ND | Do | | | 3 RD | Assumption of pure torsion | | | 4 TH | The torsion equation for solid and hollow circular shaft | | 14 th | 1 st | Do | | | 2 ND | Do | | | 3 RD | Comparison between solid and hollow shaft subjected to pure torsion | | | 4 TH | Do | 10/10/22 Gove Polytechnic Kalahandi Dombow # **LESSON PLAN: WINTER 2022** | iscipline: | Semester: 300 | Name of the teaching faculty: | |--------------------|---------------------|--| | [echanical | WINTER 2022 | Dambarudhar Patel k Semester From Date: 15/09/2022 To Date: 22/12/2022 | | ubject: Mechanical | No of days/per week | No of weeks:14 | | ngineering Drawing | class allotted. | Topic to be covered | | Week | Period | Revision of Engineering Drawing of 1st Year | | 1st | 1st | Do | | | 2nd | Do | | | 3rd | Do | | | 4th | | | | 5th | Do Do | | | 6th | Draw plan, elevation and side view of different machine elements from their isometric | | 2 nd | 1st | view using AutoCAD & mini drafter (William 3 575 375 | | | 2nd | Do | | | 3rd | Do | | | 4th | Do | | | 5th | Do | | | 6 th | Do | | | | Bolt, nut ánd threads | | 3rd | 1st | Do | | | 2nd | Do | | | 3rd | Do | | | 4th | Do | | | 5th | Do | | | 6 th | Cotter joint | | 4th | 1st | Do | | | 2nd | Do | | | 3rd | · · · · · · · · · · · · · · · · · · · | | | 4th | Do | | | 5 th | Do | | | 6 th | Do Karakka kaint | | 5th | 1st | Knuckle joint | | 5 | 2nd | Do | | | 3rd | Do Do | | | 4th | Do | | | 5 th | Do | | | 6 th | Do | | E** | 1st | Rigid pedestal bearing | | | | Do | | | 2nd | Do | | 6 th | 3rd | Do Company of the Com | | | 4th | Do | | | 5th | Do | | | 6 th | Foot step bearing | | 7 th | 1st | Do | | | 2nd | Do | | Carlotte C 12 State | 4th | Do | | |---------------------|-----------------|-----------------------------|--| | | 5th | Do | | | | | Do | English the second of seco | | | 6th | Simple Screw jack | | | th | 1st | Do | A CHARLES A LEGISLA SE DE SEGUEL | | | 2nd | Do | Nones 中海位置 | | | 3rd | Do | | | | 4 th | Do | | | | 5th | Do | | | | 6 th | Connecting rod of IC Engine | | | 9th | 1 st | Do | | | | 2nd | Do | | | | 3rd | Do | | | | 4 th | Do | | | | 5 th | Do | | | | 6 th | Do | | | 10 th | 1st | do | | | | 2nd | Boiler safety valve | | | | 3rd | Do | | | | 4th | Do , | | | | 5 th | Do | | | | 6 th | Do | | | 11 th | 1st | Do | | | | 2nd | Do | | | | 3rd | Do | | | | 4 th | Spring loaded valve | | | | 5 th | Do | | | | 6 th | Do | | | 12th | 1st | Do | | | | 2nd | Do | | | | 3rd | Do | | | | 4th | Do | | | | 5 th | Hydraulic non return valve | | | | 6 th | Do | | | 13 th | 1 st | Do | No. of the second secon | | | 2 nd | Do | | | | 3rd | Do | | | | 4th | Do | | | | 5th | Do | | | | 6 th | Flat belt pulley | | | 14 th | 1st | Do | | | | 2 nd | Do | | | | 3rd | Do | | | | 4th | Do | | | | 5 th | Do | | | | 6 th | 22.22 | Inon | Solper 22 Gov. Por Shnie Dampoon #### **LESSON PLAN: PT WINTER SEMESTER 2022** | Discipline:
Mechanical Engg. | Semester: 3rd | Name of the Teaching Faculty: Anirudha Tarai | | |--|--|---|--| | Subject:
Production
Technology | No. of
days/Week
class allotted: | Semester From date:15-09-2022 To Date: 22-12-2022
No. of Weeks: 15 | | | Week | Class Day | Theory Topics | | | 1st | 1st | Set induction about the subject, objectives, question pattern | | | To Bed Section | 2nd | Unit-1(Metal Forming Processes): Objectives,Introduction Chalk board summary | | | | 3rd | MILEY, Extrusion: Definition & Classification Chalk board summary | | | | 4th | MILEY, Explain direct, indirect and impact extrusion process. Chalk board summary | | | 2nd | 1st | MILEY, Define rolling. Classify it, Chalk board summary | | | | 2nd | MILEY, Differentiate between cold rolling and hot rolling process. Chalk board summary | | | | 3rd | MILEY,List the different types of rolling mills used in Rolling process,Chalk board summary | | | | 4th | MILEY, Video presentation, Assignments, Questions and Answers session | | | 3rd | 1st | Unit-2(Welding): Set Induction, Objectives, Introduction, Define welding and classify various welding processes., Chalk board summary | | | Jiu | 2nd | MILEY, Explain fluxes used in welding, Chalk board summary | | | | 3rd | MILEY, Explain Oxy-acetylene welding process, Chalk board summary | | | | e lette e izhiocionisa | MILEY, Explain various types of flames used in Oxy-acetylene welding | | | CONTRACTOR | 4th | process,Chalk board summary | | | 1+b | 1-4 | MILEY, Explain Arc welding process. | | | 4th | 1st | Chalk board summary | | | | 2nd
3rd | MILEY, Specify arc welding electrodes, Chalk board summary MILEY, Define resistance welding and classify it, Chalk board summary | | | | 4th | MILEY, Describe various resistance welding processes such as butt | | | 5th | 1st | welding, spot welding, flash welding, projection welding and seam | | | Jul | 2nd | weiding, spot weiding, hash weiding, projection weiding and seam | | | | 3rd | MILEY, Explain TIG and MIG welding process, Chalk board summary | | | | 4th | MILEY, State different welding defects with causes and remedies, Chalk board | | | 6th | 1st | summary | | | The second secon | 2nd | MILEY, Video presentation, Assignments, Questions and Answers | | | | 3rd | Unit-3(Casting): Set Induction, Objectives, Introduction of Casting, Chalk board summary | | | | 4th | MILEY, Define Casting and Classify the various Casting processes, Chalk board | | | 7th | 1st | summary | | | | 2nd | MILEY, Explain the procedure of Sand mould casting, Chalk board summary | | | State | 3rd | MILEY, Explain different types of molding sands with their composition and | | | | 4th | properties, Chalk board summary | | | 8th | 1st | MILEY, Classify different pattern and state various pattern allowances, Chalk | | |------|----------------|---|--| | | 2nd | board summary | | | | 3rd | MILEY, Classify core, Chalk board summary | | | | 4th | MILEY, Describe construction and working of cupola and crucible furnace, Chalk | | | 9th | 1st | board summary | | | | 2nd | MILEY, Explain die casting method, Chalk board summary | | | | 3rd | MILEY,Explain centrifugal casting such as true centrifugal casting, centrifugil with advantages, limitation and area of application,Chalk board summary | | | | 4th | | | | 10th | 1st | | | | | 2nd | MILEY, Explain various casting defects with their causes and remedies, Chalk board summary | | | | 3rd | MILEY, Video presentation, Assignments, Questions and Answers | | | | | Unit-4(Powder Metallurgy): Set Induction, Objectives, Introduction of Powder | | | | 4th | Metallurgy, Chalk board summary | | | 11th | 1st | MILEY, Define powder metallurgy process, Chalk board summary | | | | harm the title | MILEY,State advantages of powder metallurgy technology technique,Chalk | | | | 2nd | board summary | | | | 3rd | MILEY, Describe the methods of producing components by powder metallurgy | | | | 4th | technique, Chalk board summary | | | 12th | 1st | MILEY, Explain sintering, Chalk board summary | | | | 2nd | MILEY, Economics of powder metallurgy, Chalk board summary | | | | 3rd | MILEY, Video presentation, Questions and Answers session | | | | 4th | Unit-5(Press Work): Set induction, Objectives, introduction to Press Work, Chalk board summary | | | 13th | 1st | MILEY, Describe Press Works: blanking, piercing and trimming, Chalk board summary | | | | 2nd | MILEY, List various types of die and punch, Chalk board summary | | | | 3rd | MILEY, Explain simple, Compound & Progressive dies, Chalk board summary | | | | 4th | MILEY, Describe the various advantages & disadvantages of above dies, Chalk board summary | | | 14th | 1st | MILEY, Video presentation, Assignments, Questions and Answers session | | | | 2nd | Unit-6(Jigs and fixtures): Set induction, Objectives, introduction to Jigs and fixtures, Define jigs and fixtures, chalk board summary | | | | 3rd | MILEY,State advantages of using jigs and fixtures,State the principle of locations,Chalk board summary | | | | | MILEY, Describe the methods of location with respect to 3-2-1 point location of | | | | 4th | rectangular jig, Chalk board summary | | | .5th | 1st | MILEY, List various types of jig and fixtures, Chalk board summary | | | | 2-1 | | | | | 2nd | MILEY, Video presentation, Assignments, Questions and Answers session | | | | 3rd | Revision, Objective Test, Classroom Presentation by students | | | | 4th | | | Sign. Of Faculty Concerned Sign of HOD Sign og Principal